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Growing dynamics of Internet providers

Andrea Capocci,1 Guido Caldarelli,2 Riccardo Marchetti,2 and Luciano Pietronero2

1Institut de Physique The´orique, Universite´ de Fribourg, CH-1700 Fribourg, Switzerland
2INFM, Sezione di ROMA 1, and Dipartmento Fisica, Universita` di Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, 00185 Roma, Italy

~Received 6 June 2001; published 29 August 2001!

In this paper we present a model for the growth and evolution of Internet providers. The model reproduces
the data observed for the Internet connection as probed by tracing routes from different computers. This
problem represents a paramount case of study for growth processes in general, but can also help in the
understanding the properties of the Internet. Our main result is that this network can be reproduced by a
self-organized interaction between users and providers that can rearrange in time. This model can then be
considered as a prototype model for the class of phenomena of aggregation processes in social networks.
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Networks are systems composed by elementary units
nodes, connected by directed or undirectedlinks. The num-
ber of links pointing to a node,k, is known as the degree o
the node, whose distribution gives the networkconnectivity.
This simple structure is almost ubiquituous in nature, and
reason of such a success is often linked to the optimizatio
some cost function. For example, in all transport proces
networks are selected to efficiently distribute the quanti
of interest among the sites connected. Networks could
be used to describe both the spreading of information
diseases@1# and physical structures as, for example, riv
basins @2#, biological distribution networks~vascular sys-
tems! @3#, and some properties of the hardware layout
Internet @4,5#. A detailed discussion of such networks a
some models are described in Ref.@6#.

Here, we present some experimental measures of the
work of Internet providers and we propose a simplifi
model in order to explain them. It is worth to note that th
network does not correspond to the one composed by
web pages. This network is composed by the physical c
nections of the computers and the measures come from
analysis of the data provided by the Internet Mapping Pro
@7#. Hereafter, we are going to discuss only this particu
system and we do not want to describe neither web pa
network nor other social systems. Recently@5#, some statis-
tical properties of the connectivity of this physical netwo
of internet have been investigated. For such a system, a
like structure has been found by checking the routers c
nections from a starting point. Despite the bias introduced
observing the Internet from a single node, some statist
feature can be established, as the power-law distributio
the degree. Here, instead we are focusing on the pos
dynamics behind the formation of such a structure. The m
result from the data analysis is the power-law distribution
a site degree showing the absence of a particular scal
would be tempting then, to assume that such a scale-
distribution has been originated by some sort of optimizat
of the supply present in the providers market. This is
main idea inspiring our dynamical model that should mim
the evolution of a system of users and providers. The mo
we propose here is in close relationship with a prototy
growth model introduced by Simon@8# and recently im-
proved@6,9# in order to explain the widespread occurrence
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fractal behavior in several cases ranging from the web-p
statistics@10,11# to scientific citation@12# actors in the same
movie cast@13–16#. Some of the networks considered di
plays these scale-free properties, as a result of some op
zation, as, for example, for the blood vessels@3# or the river
basins@17#. In others, a ‘‘small world’’ phenomenon arise
@1#, and through suitable shortcuts, all the points are c
nected to one each other in a few steps. Together with
numerical analysis upon real social networks, a strong ef
is provided by the physicists’ community to find suitab
theoretical models for such systems.

The set of data is obtained through a computer instruc
that allows one to trace the route from one terminal to a
allowed address in the Internet domain. The UNIX comma
tracerouterecords all the nodes through which the target
reached from the starting point where the command is r
These paths can change over time for the following reaso
First, the routes reconfigure since the path is variable acc
ing to the traffic at the moment, or more generally, accord
to the availability of the connection. Second, the whole str
ture is physically evolving due to the new connections t
take place. Nevertheless, the main statistical properties
this structure remain constant in time even if the total nu
ber of connections increases. These data can be put
treelike structure such that providers are organized in lev
the main providers on the top level are linked to second
providers that provide the connection to successive lev
down to the common user level. The degree of the provid
can now be computed over all the levels of the network. T
main result is that the probability density function~PDF! has
to find a node with degreek scales following a power law
~see Fig. 1! where the exponentg is equal to 2.2:

P~k!5k2g. ~1!

Since a similar value is also known to describe the pow
law distribution of links in web pages, it is possible that
similar evolution holds for both of them.

In particular, we propose a mechanism that describes
development of the connections between two subsequent
els in a network. In our model, two different classes of nod
are present, representing providers and users~that possibly
could act as providers for a lower level of users!. Sites rep-
©2001 The American Physical Society05-1
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resenting providers can have several links, pointing to ot
sites corresponding to users. Users, on the other hand, h
single link, pointing to their provider. They are not allowe
to have more than one provider. By iterating this microsco
cal interaction level by level one could, in principle, recov
the whole tree structure of the network. At each time step
node is added to the network. The new node can be eith
provider with a probabilityr or a user with probability 1
2r . When a provider is added,D(t) users in the network are
chosen at random, and rewired to the new provider. Links
the previous providers are then removed. We assume tha
integer numberD(t) is a random variable with Poisson di
tribution and mean valued. This aims to mimic the fact tha
a real provider decides to enter the network when it expe
to acquire a certain number of connected users,d on average,
according to some microeconomical optimization rule. T
randomness ofD(t) takes into account inexact forecas
about the number of rewiring users.

This addition of a provider does not change the total nu
ber of links in the network. Instead, when a user is added
linked through a new link to an existing provider. Then, t
addition of a user increases by one the total number of lin
The probability that a provider acquires a new user is p
portional to its degree, that is, the number of users it is link
to. This rule known as ‘‘richer gets richer condition’’ is at th
basis of the typical behavior observed in scale-free netwo
@9,14#, different from the features shown by an ordinary ra
dom graph@18#. We callki(t) the degree of theith provider
~introduced at timet i) and

K~ t !5(
i

ki~ t ! ~2!

the total number of links~and users! in the network, at time
t. A user is added at a rate (12r ) per time step and is con

FIG. 1. The degree distribution in the model withr 50.29 and
d50.41 and in the real Internet data collected on different days
the inset there is the temporal behavior of the degree of a prov
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nected to a provider with a probability proportional to i
degree. Then, theith provider acquires a new link with a
probability (12r )ki /K. A provider is added with probability
r at each time step. Each user has the same probability 1/K to
be rewired to the new provider. Thus, a provider with deg
ki losesl users (l .0) with ‘‘binomial’’ probability PC( l )

PC~ l !5r S D~ t !

l D ~ki /K ! l~12ki /K !D(t)2 l , ~3!

whose mean value isD(t)ki /K. The degree of a provide
does not change with the remaining probability (12r )(1
2ki /K)1r (12ki /K)D(t). Since new links are created a
rate (12r ) per time step, the number of links at timet is
K(t)5(12r )t, for larget values. Thus, one can compute th
time evolution of the average connectivityk̄i(t) over many
realizations of the model. To do that, we assume that
correlation betweenk(t) andD(t) can be neglected and tha
the average of the two can be taken independently andD(t)
be replaced byd in the mean value of Eq.~3!:

k̄i~ t11!5 k̄i~ t !1~12r !
k̄i~ t !

K~ t !
2rd

k̄i~ t !

K~ t !
, ~4!

where the second term in the right-hand side of this equa
corresponds to the addition of a new user, and the third t
corresponds to the subtraction of links after the birth o
new provider. This equation can be written in the continuo
limit as

dk̄i

dt
5

12~d11!r

~12r !t
k̄i . ~5!

This, with the boundary conditionki(t i)5d, gives

k̄i~ t !5dS t

t i
D s

, ~6!

where

s5
12~d11!r

12r
. ~7!

One can see thatki(t)/K(t) goes to 0 ast goes tò for all i,
showing that no node grows in degree as fast as the w
network. The stability of the network is then assured. T
dynamical behavior described in Eq.~6! is in good agree-
ment with the numerical simulations of the model, who
dynamical properties are shown in the inset of Fig. 1 fo
single provider. By means of this relation between time a
degree, we can now compute the probability that a provi
has a degree less thank, P(ki,k). We assume thatP(ki

,k).P( k̄i,k). Solving Eq.~6! for t i , one can see that

ki~ t !,k⇔ t i

t
.S k

dD 2[12r /12(d11)r ]

. ~8!

This means that providers with a degree less than a g
valuek are those ones that have been added to the netw

n
er.
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after a corresponding time, and have not had time enoug
develop a cluster ofk users around them. Since nodes a
added at a uniform rate,

P~ki,k!.P„t i /t.~k/d!2[12r /12(d11)r ]
…

512S k

dD 2[12r /12(d11)r ]

. ~9!

We can then write for the PDFp(k)5dP(ki,k)/dk, which
yields

p~k!;k2g; ~10!

where

g5
22~d12!r

12~d11!r
. ~11!

Equation~11! provides us with an upper bound onr, since
one can see that the exponent diverges atr 51/d11. Nu-
merical simulations, as shown in Fig. 1, follow the predict
behavior. We recall here that the external parametersr andd
are estimated by statistical surveys of the internet. Thro
the tracerouteprocedure one can describe the connection
the outlet by means of a treelike structure. However,
iteration of this procedure does not show the whole struc
of a given region of Internet, since cross-links between s
at the same distance are not seen. Yet, some statistical p
erty of the considered network can still be established.
assume thattracerouteshows only a given fractionm,1 of
the real numberk of links pointing to a site. This, howeve
does not affect the shape of the distribution~if it is a scale-
free one! and the reliability of our statistical survey. We the
call ke f f5mk the apparent degree of a site. By thetraceroute
picture of the physical network of Internet, the degree dis
bution densityq(ke f f) shows a power-law behavior

q~ke f f!;ke f f
2a , ~12!

wherea.2.2. For the considerations made above, the ex
nent found by thetracerouteanalysis is a good approxima
tion of the real value. This value is slightly different from th
2.48 recovered by the analysis of Ref.@4#. We believe that
this difference arises mainly from the growth of the Intern
~that is now very different from that at the time!. This en-
ables us to writeg.2.2. The connectivitŷ k& cannot be
computed bytraceroute, since the fractionm is unknown.
Nevertheless,̂ k& is provided in other published statistic
analysis @19#, according to which the connectivity is 3.4
Nevertheless, we checked for the first layers if the data a
lyzed from the measured value was not that far from
above one. We also notice a decrease of the connectivity
the distance from the source oftraceroute. We decide here to
focus on the first levels that can be effectively probed by t
analysis. If we assume that our model describes the wa
network is built at each level, the predicted value for^k& is

^k&511
12r

r
. ~13!
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The unity in the right-hand side takes into account that e
site has a provider and a link that points to it, this is n
considered in our model and must be explicitly added. T
second term is the ratio between users and providers in
model.

This equation provides us with the value ofr .0.29. Re-
placing this value into Eq.~11! one can recover the value o
d.0.41. Such a value ofd, smaller than 1, shows that ou
model describes the real structure of internet when some
vider is introduced without rewiring any user, as it is su
gested by the third term in the right-hand side of Eq.~4!. If a
new provider is born and no user gets rewired, the provide
sentenced to death, since a provider without users ca
survive.

Until now computation has been done in the limit hypot
esis of connection between users and only one provider.
can study through numerical simulation the behavior wh
users are allowed to be linked with different users. In t
case, when a provider is added, users rewired to it keep t
old provider connection.

In our model, the possibility to be connected to seve
users corresponds to neglecting the third term in Eq.~4!,
which takes into account the probability for a provider
lose a user due to a newborn provider, and replacingK(t),
the total number of links, by

K~ t !5@11r ~d21!#t, ~14!

since now one link is added when a user is added, and
links, on average, when a provider is added. Performing
same computation as above, one would expect to obta
scale-free degree distribution, with an exponent

FIG. 2. ~above! Degree distribution for different values of th
providers birth rater allowing users to have more than one provid
~below! Degree distribution with different user birth ratesu51
2r and probability of mergingf.
5-3
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g5
21r ~d22!

12r
. ~15!

This behavior is confirmed by simulations, as can be see
Fig. 2. In addition, we simulated the case in which provid
merge at a uniform rate. We assume that at each time s
providers are added at a rater, with a probability f ,r , a
randomly chosen provider vanishes and users connected
are rewired to another provider, according to the richer-g
richer rule, and users are introduced with probabilityu51
2r 2 f . The assumption made onf is needed to avoid the
extinction of almost all providers, as each merge decrea
by 1 the number of providers. If the merging rate is high
than the birth rate of new providers, the number of provid
rapidly tends to 1. As well as in the previous versions of
model, this growing network displays a scale-free distrib
tion of degree. This result is shown in the lower part of F
2, where we plotted the degree distribution for different v
ues ofr and constantf. This scale-free behavior characteris
of ‘‘social’’ networks has been recently explained@14# by
means of two ingredients: first, the number of nodes ha
grow in time, and second, the nodes the with greater de
-
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are advantaged in acquiring new links. This model gives
exponentg53, while the real exponents found in the soc
networks considered above are in the range between 2 an
Since then, other models of growing networks have be
proposed, whose degree distribution are closer to the
ones in the corresponding real network@20,21#. The model
we introduced describes the dynamical development of a
work composed by two classes of nodes, as it is the cas
the internet connections between providers and users. In
the physical structure of Internet is made of superposed
els of nodes, corresponding to providers, subproviders
users at the lowest level, whose distribution of degree
been recently found to show a power law behavior. T
model exhibits the same scale-free shape depending on
external parametersr, i.e., the providers fraction in the tota
number of nodes, andd, the average number of users wh
join a new born provider. The parameters can be natur
tuned to realistic values to recover the exact exponent of
tail of the distribution of the degree.
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